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A B S T R A C T

The widespread Old World avian family Locustellidae (‘grassbirds and allies’) comprises 62 extant species in 11
genera. In the present study, we used one mitochondrial and, for most species, four nuclear loci to infer the
phylogeny of this family. We analysed 59 species, including the five previously unsampled genera plus two
genera that had not before been analysed in a densely sampled dataset. This study revealed extensive dis-
agreement with current taxonomy; the genera Bradypterus, Locustella, Megalurus, Megalurulus and Schoenicola
were all found to be non-monophyletic. Non-monophyly was particularly pronounced for Megalurus, which was
widely scattered across the tree. Three of the five monotypic genera (Amphilais, Buettikoferella and Malia) were
nested within other genera; one monotypic genus (Chaetornis) formed a clade with one of the two species of
Schoenicola; whereas the position of the fifth monotypic genus (Elaphrornis) was unresolved. Robsonius was
confirmed as sister to the other genera. We propose a phylogenetically informed revision of genus-level tax-
onomy, including one new generic name. Finally, we highlight several non-monophyletic species complexes and
deep intra-species divergences that point to conflict in taxonomy and suggest an underestimation of current
species diversity in this group.

1. Introduction

Sylvioid songbirds (Sylvioidea sensu Fregin et al., 2012) include for
example all Old World ‘warblers’ (several families), ‘babblers’ (several
families), swallows (Hirundinidae), bulbuls (Pycnonotidae) and larks
(Alaudidae) (review in Alström et al., 2013a). One of the ‘warbler’ fa-
milies in this assemblage is the Locustellidae (‘grassbirds and allies’).
This family has erroneously been referred to as Megaluridae (e.g. by
Alström et al., 2006; Johansson et al., 2008), but Locustellidae has
priority (Bock, 1994: p. 152). This family consists of 62 extant and one

recently extinct species (Gill and Donsker, 2017), which are widely
distributed across Africa, Eurasia and Oceania. The family has a che-
quered taxonomic history, both at the generic and species level (review
in Alström et al., 2013a).

Only one broad phylogenetic analysis has been published (Alström
et al., 2011a), which revealed several non-monophyletic genera, and
proposed a taxonomic revision. For instance, the Asian Bradypterus
were synonymised with Locustella and Dromaeocercus with Bradypterus
(hence restricting the latter to African and Malagasy species), and
Eremiornis and Cincloramphus were synonymised with Megalurus.
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However, these authors stressed that the circumscription of Megalurus
was preliminary, as the type species (M. palustris) was sister to the
Bradypterus sensu stricto clade in their analysis, albeit with low support.
In contrast, Dickinson and Christidis (2014) and del Hoyo and Collar
(2016) split Megalurus into three genera (Megalurus sensu stricto, Poo-
dytes and Cincloramphus) based on the results of Alström et al. (2011a).
Oliveros et al. (2012) unexpectedly found Robsonius and Malia to be
part of Locustellidae.

Five genera traditionally placed in Locustellidae have not been
analysed phylogenetically: Amphilais (monotypic, Madagascar),
Megalurulus (six species, Melanesia), Buettikoferella (monotypic, Timor),
Chaetornis (monotypic, Indian Subcontinent) and Elaphrornis (mono-
typic, Sri Lanka) (Gill and Donsker, 2017). Here we reconstruct the
phylogeny of Locustellidae, including all genera and 59 of 62 re-
cognised species (Gill and Donsker, 2017) using mitochondrial and
nuclear loci. We present a chronogram, which includes multiple sub-
species for some polytypic species, and propose a revised taxonomic
classification of the Locustellidae.

2. Material and methods

2.1. Study group

We analysed sequence data from 122 individuals of 59 extant and
one recently extinct (Megalurus rufescens) species, representing all
genera and all but three species (Gill and Donsker, 2017; Supplemen-
tary Table S1). As outgroups, we used representatives of the presumed
most closely related families, Bernieridae, Donacobiidae and Acroce-
phalidae (Fregin et al., 2012; Supplementary Table S1).

2.2. Lab work

DNA was extracted from fresh material using the Qiagen DNA Mini
Kit and following the manufacturer’s protocol. Twenty three toepad
samples (17 species) were obtained from museum specimens
(Supplementary Table S1), and most of these were extracted in clean
aDNA-dedicated spaces, using the Qiagen DNA Micro Kit and the pro-
tocol detailed in Irestedt et al. (2006). We sequenced the mitochondrial
cytochrome b (cytb) gene and four nuclear regions: myoglobin intron 2
(myo), ornithine decarboxylase (mainly) introns 6–7 (ODC), glycer-
aldehyde-3-phosphodehydrogenase intron 11 (GAPDH) and lactate
dehydrogenase intron 3 (LDH). Amplification and sequencing of the
fresh samples followed the protocols described in Fregin et al. (2012).
The toepads were sequenced in short (150–300 bp) segments with
specifically designed primers and specific amplification profiles (Sup-
plementary Table S2). Not all loci were obtained for all species, and for
eight species only cytb was available (Supplementary Table S1). In
addition, we downloaded sequences from GenBank of the recombina-
tion-activating gene 1 (RAG1) for the 9 Locustellidae species for which
this gene was available as well as 9 outgroup species (GenBank numbers
in Supplementary Fig. S4).

Authenticity of sequences obtained from toepad samples is sup-
ported by several lines of evidence. (1) When independent samples
from the same species were included, the sequences were always highly
similar. (2) Phylogenetic relationships based on individual PCR am-
plicons were the same as those using full cytb contigs. (3) No fragment
was identical to any other species included in this study. (4)
Overlapping forward and reverse sequence fragments were identical.
(5) The mitochondrial sequences showed no double signal in the elec-
tropherograms or stop codons, insertions or deletions, and a vast ma-
jority of nucleotide substitutions were found in the 3rd codon position
and resulted in few amino acid substitutions (of which a majority also
was found in sequences obtained from the fresh samples). The mi-
tochondrial sequences from fresh samples were also validated in the
same way.

2.3. Phylogenetic analyses

Sequences were aligned and checked using Geneious 7.1.9
(Biomatters Ltd.). For the nuclear loci, heterozygous sites were coded as
ambiguous. Trees were estimated by Bayesian inference using BEAST
1.8.4 (Drummond et al., 2012) with different data partitioning schemes:
(1) all loci were analysed separately (single-locus analyses, SLAs); (2)
all sequences except RAG1 were concatenated and partitioned by locus
(RAG1 excluded because only few species were available); and (3)
nuclear loci except RAG1 were concatenated and partitioned by locus.

All analyses were run under the best-fit models according to the
Bayesian Information Criterion calculated in jModeltest 2.1.7 (Darriba
et al., 2012). The following models were selected: cytb, GTR + Γ + I;
myo, HKY; GAPDH, LDH and RAG1, HKY + Γ; and ODC, HKY + I. An
uncorrelated relaxed clock model with a lognormal distribution was
applied to all partitions. Substitution models and clock models were
unlinked. A ‘birth-death incomplete sampling’ tree prior was applied.
Default priors were used except for the ‘birthDeath.meanGrowthRate’,
for which a normal prior with an initial value 1.0, mean 2.0 and
standard deviation 1.0 was applied. Xml files were generated in the
BEAST utility program BEAUti version 1.8.4. The analyses were run for
50–100 million generations and sampled every 1000 generations, and
each analysis was run twice.

Integrative species tree estimation was performed using *BEAST
(Heled and Drummond, 2010) in BEAST 1.8.4, with gene trees and
species trees estimated simultaneously. We ran analyses under the same
substitution models per partition as in the previous analyses, and an
uncorrelated lognormal relaxed clock prior (Drummond et al., 2006). A
piecewise linear population size model with a constant root was used as
a prior for the multispecies coalescent and a birth-death model as prior
on divergence times. Default settings were used for the priors. 100–150
million generations were run in different runs, sampled every 1000
generations; the analysis was repeated four times.

In order to estimate divergence times and intraspecific variation, the
cytb data set with multiple subspecies was analysed in BEAST version
1.8.4 (Drummond et al., 2012). Analyses were run under the GTR + Γ
model (cf. Weir and Schluter, 2008) with a ‘birth-death incomplete
sampling’ species tree prior with a normal distribution with mean 2.0
and standard deviation 1.0. A strict clock with a mean rate of 2.1%/
million years (Weir and Schluter, 2008) and a normal prior distribution
with standard deviation 0.001 was applied. Default settings were used
for the other priors. 100 million generations were run, sampled every
1000 generations. The analysis was run twice. Nodes B and I were
constrained in the final analysis based on the results from the multi-
locus analyses (cf. Fig. 1), as these clades were not supported by cytb
alone (and no alternative topology was strongly supported in the un-
constrained cytb tree).

In all BEAST and *BEAST analyses, convergence to the stationary
distribution of the single chains was inspected in Tracer 1.6 (Rambaut
et al., 2014). The effective sample sizes (ESS) for the joint likelihood
and other parameter values were> 1000, representing good mixing of
the MCMC, except in the *BEAST analyses, where ESSs were 100–150.
We also examined convergence and reproducibility by running each
analysis at least twice, with random starting points, and comparing the
results. In all analyses, including the *BEAST analyses with low ESSs,
the topologies (including relative branch lengths) and posterior prob-
abilities (PPs) were similar across different runs. The first 25% of
generations were discarded as ‘burn-in’, and the PPs were calculated
from the remaining samples. Samples were combined in LogCombiner
1.8.4, and trees were summarized using TreeAnnotator version 1.8.4
(both included in the BEAST package), choosing ‘Maximum clade
credibility tree’ and ‘Mean heights’, and displayed in FigTree version
1.4.3 (Rambaut 2002). Xml files for all multilocus analyses are avail-
able as Supplementary Table S2.

The concatenated sequences (except RAG1) partitioned by locus
were also analysed by Maximum Likelihood bootstrapping (MLBS).
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MLBS (1000 replicates) was conducted with RAxML-HPC2 version
8.2.10 (Stamatakis, 2014). Default parameters were used.

Because Robsonius was sister to the rest of Locustellidae in all pre-
liminary analyses, we tested that this genus is indeed part of this clade
and not more distantly related by analysing a dataset including re-
presentatives from the primary clades within the Passerida group as
revealed by previous studies (e.g. Alström et al., 2006; Fregin et al.,
2012; Alström et al., 2014; Moyle et al., 2016), using sequences from
Alström et al. (2014). This was run in MrBayes 3.2 (Huelsenbeck and
Ronquist, 2001; Ronquist and Huelsenbeck, 2003) using concatenated
sequences partitioned by locus and the following models: cytb and ODC
GTR + Γ + I; myo and GAPDH HKY + Γ; and LDH GTR + Γ. Default
priors in MrBayes were used. Four Metropolis-coupled MCMC chains
were run for 5 million generations and sampled every 1000 genera-
tions. Convergence was checked as for the BEAST analyses, as well as by
the average standard deviation of split frequencies passing below 0.01

and the potential scale reduction factor (PSRF) being close to 1.00 for
all parameters.

Several of the BI and the MLBS analyses were run on the CIPRES
Science Gateway (Miller et al., 2010).

2.4. Song comparisons

Sound recordings of territorial songs were obtained from all
Locustella species (own recordings and from xeno-canto [www.xeno-
canto.org] and British Library National Sound Archive). Sonograms
were generated in Raven Pro 1.5 (Cornell Laboratory of Ornithology,
Ithaca, USA) to graphically illustrate differences among species. All of
our own sound recordings used for this study have been deposited in
xeno-canto (www.xeno-canto.org), and detailed information is avail-
able as available as Supplementary Table S3.
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Fig. 1. *BEAST phylogeny of Locustellidae based on the mitochondrial cytb, and nuclear myo, ODC, LDH and GAPDH introns. Posterior probabilities (PP) and
maximum likelihood bootstrap (MLBS) values are indicated at the nodes, in this order; * means PP 1.00/MLBS 100%. Clade labels (A–J) indicate clades discussed in
the text; # indicates species not previously analysed phylogenetically; and § indicates species not analysed in previous comprehensively sampled Locustellidae
phylogeny. 1 MLBS 83% for clade with Schoenicola brevirostris sister to clade C. Illustrations by Ian Lewington, Brian Small, Jan Wilczur and Tim Worfolk, from del
Hoyo et al. (2006), with permission from the publishers.
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3. Results

3.1. Species-level phylogeny

The *BEAST phylogeny based on all sequences except RAG1 (Fig. 1)
identified Robsonius as sister to all other locustellid species, which were
divided into two primary clades (A and B). Clade A (PP 1.00) comprised
all genera except Locustella, and clade B (PP 0.94) contained all Lo-
custella and one Bradypterus. Within clade A, five strongly supported (PP
1.00) clades were found (C–G), each containing 1–4 genera. Clades C–E
plus Schoenicola brevirostris and Elaphrornis palliseri formed the poorly
supported (PP 0.84) clade H; and clades F–G formed clade I (PP 0.94).
Clade H comprised six genera from the Afrotropical, Madagascan and
Oriental regions, and clade I included four genera mainly distributed in
the Indo-Pacific. Within clade B, two main clades (J, K) were strongly
supported (PP 1.00). All of the polytypic genera were non-mono-
phyletic. The Afrotropical Bradypterus clade (C) also contained the
monotypic genus Amphilais from Madagascar, whereas the Afrotropical
Bradypterus alfredi was in one of the Locustella clades (J). Megalurus and
Megalurulus were scattered across clades D, F and G, and the monotypic
Buettikoferella and Malia were also nested among these. Finally, the two
Schoenicola species were not sisters. Instead, the Oriental S. platyurus
was strongly supported as sister to the monotypic Chaetornis, whereas
the position of the Afrotropical S. brevirostris was uncertain.

The topology of the BEAST tree based on the concatenated se-
quences (except RAG1) was mostly in agreement with the *BEAST tree
(Supplementary Fig. S1). The former found stronger support for clade B
(1.00 vs. 0.94) and I (0.98 vs. 0.94) as well as a number of the re-
lationships within smaller clades (highlighted in blue in Supplementary
Fig. S1). The position of Robsonius as sister to the rest of Locustellidae
was confirmed in the analysis of a broader sampling from Passeriformes
(Supplementary Fig. S2). The tree based on concatenated nuclear loci
(except RAG1; Supplementary Fig. S3) strongly supported relationships
among clades J1–J5 that were incongruent with those in the *BEAST
(Fig. 1) and cytb (Fig. 2) trees. Single-locus analyses, especially of the
nuclear loci, were generally not well resolved (Supplementary Figs. S4
and S5). Maximum Likelihood bootstrapping of the complete dataset
(except RAG1) was generally in agreement with the BI analyses, espe-
cially the BEAST analysis of concatenated sequences (Fig. 1).

3.2. Dating and intraspecific variation

The chronogram based on cytb and containing subspecies of some
species (Fig. 2) has generally wide confidence intervals. Our dating
suggests that Robsonius diverged from the rest of Locustellidae at
22.7 mya (95% HPD 16.9–29.2 mya), and the age of the split between
clades A and B was estimated at 15.4 mya (95% HPD 12.1–19.0 mya).
The two primary clades A and B were estimated to have diversified
since around 14.5 mya (95% HPD c. 11–18mya). Six of the main clades
(C, E, F, G, J, K) diversified during the period c. 7.8–11.4 my (95% HPD
c. 5.6–14.3 mya).

Several of the polytypic species included subspecies estimated to
have separated > 2mya: Bradypterus lopezi ufipae vs. B. l. mariae
(2.1 mya; 95% HPD 1.3–3.0 mya); Megalurus palustris forbesi vs. M. p.
toklao (4.0 mya; 2.7–5.5 mya); and Megalurus punctatus caudatus vs. M.
p. vealeae (2.2 mya; 1.4–3.1 mya). Also the two samples of Locustella
caudata unicolor were deeply diverged (2.7 mya; 1.8–3.7 mya), as were
the two samples of the monotypic Bradypterus brunneus (5.7 mya;
4.1–7.5 mya). In addition, Megalurus timoriensis and M. macrurus were
inferred to be non-monophyletic, with deep divergences between M.
timoriensis tweedalei–M. t. crex and M. macrurus macrurus–M. m. inter-
scapularis, respectively. The non-sisters Locustella ochotensis–L. certhiola
were not monophyletic, as one individual of the former was nested
within the latter.

3.3. Morphological, vocal and behavioural differences between species in
clades J and K

Within Locustella (clade B), the species in clades J and K differ in
that the latter are generally larger (clade K: 13–18 cm, 12–33 g; clade J:
12–18 cm, 9–21 g; del Hoyo et al., 2006). The lower mandible is always
pale in the species in clade K, whereas it is all black in the breeding
season, at least in males, in many of the species in clade J (Kennerley
and Pearson, 2010; pers. obs.).

The songs of the species in clade K consist of short (c. 2–5 s) strophes
separated by distinct pauses (c. 2–15 s; shorter strophes when excited;
Fig. 3). All or most of the elements in the strophes are either different
from each other (in L. amnicola, L. fasciolata, L. pryeri) or arranged in a
few to several different “blocks” of similar notes (in L. certhiola, L.
ochotensis, L. pryeri). In contrast, the songs of the species in clade J
consist of short, comparatively simple syllables, which are mono-
tonously repeated at very short intervals (e.g. in L. accentor, L. thoracica,
L. davidi) or in drawn-out, rattling reels (e.g. in L. naevia, L. luteoventris;
Fig. 3). The songs of the species in clade J may continue without any
distinct pauses for up to a few minutes. The song of L. pryeri in clade K
may seem rather similar to that of e.g. L. tacsanowskia in clade J, but the
song elements are more varied, without the regularly repeated pattern
of L. tacsanowskia and the other species in clade J (Fig. 3). In all species
in clade K except L. fasciolata and L. amnicola, the song is regularly
delivered in a short song-flight, unlike in the species in clade J (Fig. 3;
Kennerley and Pearson, 2010; pers. obs.).

4. Discussion

4.1. Phylogeny

Our study is the most comprehensive analysis of the Locustellidae. It
includes five previously unsampled monotypic genera and in total 11
previously unstudied species and three additional species that have not
been analysed in a study with a large number of species. It also includes
one extinct species, Megalurus rufescens. Only Bradypterus grandis,
Megalurus albolimbatus and Megalurulus llaneae were not analysed.

The majority of nodes (∼60%) are well supported (PP≥ 0.95).
However, some deep relationships remain uncertain. In particular, the
support is poor for clade H, and the relationships among clades C, D, E,
Schoenicola brevirostris and Elaphrornis palliseri are equivocal, likely due
to their short internode distances. We note that the support for the
position of Schoenicola brevirostris as sister to clade C is stronger in the
concatenation analysis of all loci (PP 1.00; MLBS 83%) and in the
concatenation analysis of the nuclear loci (PP 1.00), and the support for
clade I is stronger in the concatenation analyses of all loci (PP 0.97;
MLBS 78%). This makes sense from a biogeographical point of view – S.
brevirostris is an Afrotropical species, like all Bradypterus.

The lack of evidence for a close relationship between Schoenicola
brevirostris and S. platyurus is surprising, because they have been treated
as conspecific due to their very similar appearances (e.g. Watson et al.,
1986), while they differ from Bradypterus in for example their broader
and more strongly graduated tails with pale tips (Madge, 2017). In
contrast, Chaetornis striata, which we found as sister to S. platyurus, is
morphologically markedly different, although it shares the pale-tipped
rectrices with the two Schoenicola species, and it occurs in the same
geographical area as S. platyurus (Indian subcontinent) (Madge, 2017).
We hypothesise that S. brevirostris is sister to clade E (as suggested by
cytb, although with no support), and that the plumage similarity be-
tween S. brevirostris and S. platyurus is plesiomorphic.

The Sri Lankan endemic Elaphrornis palliseri was previously placed
in Bradypterus (e.g. Watson et al., 1986), and its move to Elaphrornis was
only based on it being “entirely distinct from the genus Bradypterus”
(Dickinson, 2003). The monotypic Elaphrornis is here shown to be dis-
tinct, although a close relationship with the Bradypterus clade (C)
cannot be excluded. In contrast, the Malagasy endemic Amphilais
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seebohmi is firmly nested in Bradypterus, as sister to the Malagasy en-
demic B. brunneus. Amphilais seebohmi is sometimes placed in the genus
Dromaeocercus, together with B. brunneus (e.g. Watson et al., 1986), and
is treated as incertae sedis by Dickinson and Christidis (2014).

The position of Megalurus palustris in clade H is not strongly sup-
ported in any of our multilocus analyses, and the only SLA that strongly

corroborates this is cytb, whereas analysis of a small set of RAG1 se-
quences (Supplementary Fig. S5) strongly supports a sister relationship
between M. palustris and M. mathewsi (which is the only representative
of clade I in that analysis). The same was found by Alström et al.
(2011a), who discussed this at length, and concluded that inclusion of
Megalurus palustris in the equivalent of clade H is surprising from both a
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morphological, vocal and biogeographical point of view. If M. palustris
indeed belongs in clade H, the most parsimonious position would be as
sister to the others, as the strong similarities in plumage, structure, size
and voice to some of the other species in clade I could then be explained
as being plesiomorphic.

The non-monophyly of Megalurus is further exaggerated within

clade I, as the two monotypic genera Malia and Buettikoferella as well as
the five species of Megalurulus are intermixed with Megalurus. Alström
et al. (2011a) also found the equivalent of this clade to contain a non-
monophyletic Megalurus (see below), although they did not include
Malia, Buettikoferella or Megalurulus. Oliveros et al. (2012) recently
discovered that Malia grata, with previously unknown affinities, is part
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L. pryeri
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Fig. 3. Sonograms of Locustella sensu lato. All of the species in clade K are shown, but not all of the ones in clade J, though the ones missing from clade J have songs
that are reminiscent of species illustrated. The species in clade K have short complex strophes separated by pauses of varying length (length of pauses mainly
depending on level of excitement); only in two of the individuals shown here are the pauses short enough to show two consecutive strophes. The species in clade J
have “continuously flowing” songs, except L. tacsanowskia, which has well defined strophes of varying length separated by pauses of variable length. The three
lowermost sonograms are shown at higher temporal resolution than the others to highlight the greater complexity and less regular structure of L. pryeri compared to
L. tacsanowskia and L. luteoventris. The photos are a collage of a L. pryeri singing in song-flight, which all in clade K except L. amnicola and L. fasciolata regularly do
(photos: Lars Petersson; Honshu, Japan, June 2017). See Supplementary Table S3 for details about the recordings used to create the sonograms.
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of Locustellidae; it was recovered with strong support as sister to
Megalurus timoriensis, which was the only representative for our clade I
in their study. Buettikoferella bivittata is firmly anchored in a clade with
Megalurus mathewsi, M. timoriensis, M. macrurus and the five Megalurulus
species, although its sister relationship with M. mathewsi is poorly
supported. Also Megalurulus is not monophyletic; none of the relation-
ships among the species are strongly supported by *BEAST, although
the relationships among M. rufus, M. mariae and M. whitneyi are well
supported in the BI and ML analyses of concatenated data.

The strong non-monophyly of Megalurus and Megalurulus is un-
expected. Except for M. carteri and male M. cruralis, the members of the
genus Megalurus, including M. palustris, form a morphologically fairly
homogeneous group (del Hoyo et al., 2006; cf. Fig. 1). From a mor-
phological perspective, the species in Megalurulus and Buettikoferella
bivittata are fairly similar, while they differ much from Megalurus by
their more uniform and more saturated brown plumage colorations (del
Hoyo et al., 2006; cf. Fig. 1). The differences appear to be adaptive:
Megalurulus species occur in understory of evergreen mesic habitats,
whereas Megalurus species are associated with grasslands or more arid
scrubby habitats. Malia grata is highly aberrant in plumage and ecology
(mainly arboreal, social; Collar and Robson, 2017; pers. obs.) compared
to all other members of Locustellidae (cf. Fig. 1). Strongly divergent
plumages, such as the green and yellow plumage of Malia grata and the
boldly patterned male Megalurus cruralis, could probably evolve fairly
fast under strong selection, as has been suggested to have happened
multiple times in other families within Sylvioidea (Alström et al.,
2011b, 2013b). Niche shifts, such as in Malia grata, have likely trig-
gered strong morphological divergence in some other Indonesian island
endemics (Fjeldså et al., 2010; Alström et al., 2015). However, it cannot
be excluded that phylogenetic results suggesting unexpectedly distant
relationships between morphologically similar species might be the
result of stochastic processes, such as lineage sorting across multiple
speciation events (‘hemiplasy’; Avise and Robinson, 2008) rather than
parallel evolution.

Within clade B, subclades J and K are well supported and deeply
diverged. As further support of this subdivision, there are average dif-
ferences in size and song between them (see below). Bradypterus alfredi
is well supported as sister to Locustella luscinioides+ L. fluviatilis within
clade J. It is the only Afrotropical species in clade B.

The three species of Robsonius form a strongly supported sister clade
to the rest of Locustellidae. This agrees with Oliveros et al. (2012), who
disclosed this unexpected position of Robsonius, which was previously
considered a “babbler” (e.g. Dickinson 2003).

4.2. Dating and intraspecific variation

Recent, broadly sampled, genome-scale studies suggest generally
younger ages for sylvioid passerines than we recovered here (Prum
et al., 2015; Moyle et al., 2016). However, our results largely agree with
those from a multilocus phylogenetic analysis of all Himalayan pas-
serines, which was dated using multiple fossils and biogeographic dates
(Price et al., 2014), as well as with an analysis of the modern birds
(Neornithes) using a multigene matrix and a large number of fossil
calibrations (Claramunt and Cracraft, 2015). In particular the date in-
ferred here for the divergence of Robsonius should be treated with
caution.

Several polytypic species harbour deep cytb divergences, which are
considerably deeper than between some other taxa treated as separate
species. Because the morphological variation within some groups is
relatively slight and because many of the species are poorly known, it
seems likely that some currently recognised species are better treated as
two (or more) species. Further studies of larger samples and using in-
dependent data, such as nuclear markers and vocalisations, are war-
ranted to shed light on the taxonomic status of these taxa.

The rather widely allopatric Bradypterus lopezi ufipae and B. l. mariae
are deeply diverged (2.1 mya; 95% HPD 1.3–3.0 mya). This species

consists of two subspecies groups (Kennerley and Pearson, 2010; del
Hoyo and Collar, 2016), but B. l. ufipae and B. l. mariae belong to the
same group. However, these two taxa inhabit different montane areas
in central and eastern Africa. The divergence within the Madagascar
endemic Bradypterus brunneus, which was estimated at 5.7 mya (95%
HPD 4.1–7.5mya) is exceptional, as this species is considered mono-
typic (Dickinson and Christidis, 2014; del Hoyo and Collar, 2016; Gill
and Donsker, 2017).

The divergence between Megalurus palustris forbesi from the
Philippines and northern Borneo and M. p. toklao, which is patchily
distributed across southern continental Asia, is pronounced (4.0 mya;
95% HPD 2.7–5.5mya). Much denser sampling will be needed to
evaluate the taxonomy of this complex. A deep split (2.2. mya; 95%
HPD 1.4–3.1mya) was also found between the Megalurus punctatus
caudatus (confined to Snares Island, New Zealand) and M. p. vealeae
(North Island, New Zealand). The former has recently been treated as a
distinct species based on morphological characters (del Hoyo and
Collar, 2016). Our single sample of the extinct M. rufescens from Cha-
tham Island, New Zealand is deeply diverged from M. punctatus. These
two taxa are often treated as conspecific (e.g. Dickinson and Christidis,
2014), although del Hoyo and Collar (2016) treated them as separate
species based on morphological differences. However, the suggestion by
del Hoyo and Collar’s (2016) that M. rufescens might be most closely
related to Megalurulus rufus is strongly rejected by our data.

Megalurus timoriensis and M. macrurus are paraphyletic with respect
to each other, with deep divergences between M. t. tweeddalei and M. t.
crex and between M. m. macrurus and M. m. interscapularis, respectively.
The two latter taxa belong to different subspecies groups, which differ
in elevational distribution and number of tail feathers (Schodde and
Mason, 1999; Dickinson and Christidis 2014; del Hoyo and Collar,
2016), whereas to our knowledge the other taxa have not been sug-
gested to be markedly different. A taxonomic revision may be war-
ranted, but more extensive research is needed.

Locustella certhiola, L. ochotensis and L. pleskei have long been con-
sidered closely related, and have been treated variously as either con-
specific or different species (review in Kennerley and Pearson, 2010).
Our study supports a sister relationship and recent divergence
(0.68 mya; 95% HPD 0.35–1.06mya) between the allopatric L. pleskei
and two of the three L. ochotensis, with L. certhiola and the third L.
ochotensis as more deeply diverged sisters (2.9 mya; 95% HPD
2.0–4.0mya). The L. ochotensis with a L. certhiola cyt b haplotype was
collected at Magadan, Russia (Takema Saitoh, in litt.). The same to-
pology (except for paraphyly of L. ochotensis/L. certhiola) was pre-
viously found using a smaller mitochondrial dataset (Drovetski et al.,
2004). A more comprehensive study by Drovetski et al. (2015) also
found L. certhiola as sister to the two others in a mitochondrial ND2
tree, but recovered L. pleskei to be paraphyletic with respect to L.
ochotensis, and also identified one phenotypic L. certhiola from Kha-
barovsk with a L. ochotensis ND2 haplotype. In contrast, in a species tree
based on 12 nuclear introns, the same authors recovered L. certhiola and
L. ochotensis as sisters, with L. pleskei sister to these two, with strong
support. The dating of the deepest node in their ND2 tree was con-
siderably younger than in our study (1.6 mya; 95% HPD 1.2–2.0 mya),
and the ages estimated by the nuclear introns were even younger.

4.3. Taxonomic implications

Alström et al. (2011a) found the genus-level taxonomy of Locus-
tellidae to be strongly incongruent with the phylogeny, and proposed a
major reclassification. The present analysis, which includes 13 species
whose phylogenetic position has either not been tested previously or
only in a narrower context, revealed further conflict between taxonomy
and phylogeny. The revised taxonomy of Alström et al. (2011a) re-
cognised only four genera: Locustella (comprising the traditional Lo-
custella and all Asian Bradypterus), Bradypterus (restricting this genus to
the African species), Schoenicola (only S. brevirostris studied) and

P. Alström et al. Molecular Phylogenetics and Evolution 127 (2018) 367–375

373



Megalurus (including Eremiornis carteri, Cincloramphus cruralis and C.
mathewsi).

Alström et al. (2011a) stressed that their proposed Megalurus was
probably non-monophyletic, but noted that the support was based
mainly on cytb, and that this was contradicted by other data. Therefore,
the authors preliminarily retained Megalurus for a potentially non-
monophyletic group. However, Dickinson and Christidis (2014) and del
Hoyo and Collar (2016), based on the same study by Alström et al.
(2011a), restricted Megalurus to M. palustris (type species of this genus).
Moreover, Dickinson and Christidis (2014) and del Hoyo and Collar
(2016) applied the name Cincloramphus to M. cruralis, M. mathewsi, M.
timoriensis and M. macrurus (the two former species were previously
placed in this genus). They also resurrected the genus Poodytes for M.
gramineus, M. punctatus, M. caudatus, M. rufescens, M. carteri and M.
albolimbatus (though M. caudatus and M. rufescens were not given spe-
cies status by Dickinson and Christidis, 2014). Megalurus albolimbatus
has not yet been analysed phylogenetically.

Our results call for further taxonomic revision, although due to the
uncertain relationships especially with respect toMegalurus, none of the
alternative classifications are fully satisfactory. Synonymising Amphilais
with Bradypterus is straightforward, and so is moving Bradypterus alfredi
to Locustella. Due to the strong support for a sister relationship between
Chaetornis striata and Schoenicola platyurus, we propose synonymising
the former genus with the latter (based on priority). As there is no
unanimous support for a close relationship between these and
Schoenicola brevirostris, we hesitantly propose reinstating the name
Catriscus Cabanis, 1851 for the latter (which then becomes a monotypic
genus). Because Elaphrornis has no obvious close relatives, we suggest
retaining this monotypic genus.

With respect to Megalurus, we follow Dickinson and Christidis
(2014) and del Hoyo and Collar (2016) in restricting this name to M.
palustris and applying the name Poodytes to clade G. We also accept the
use of the name Cincloramphus for clade F excluding M. grata, but also
propose to synonymise Megalurulus and Buettikoferella with Cinclor-
amphus. Malia grata is strongly supported as belonging to clade F, and
was estimated to have separated less than one million years before C.
cruralis diverged. Accordingly, it would be appropriate to include it in
Cincloramphus (by priority); however, to maintain taxonomic stability
and also to highlight its morphological and ecological uniqueness, we
prefer to retain the name Malia. Application of the name Robsonius is
unproblematic.

Alström et al. (2011a) proposed placing all of the taxa in clade B in
Locustella (except L. alfredi, which they did not analyse), and this was
followed by Dickinson and Christidis (2014), del Hoyo and Collar
(2016) and Gill and Donsker (2017). However, in order to use the genus
category in a more consistent way across the two main clades of Lo-
custellidae, we propose splitting Locustella into two genera. The name
Locustella is restricted to clade J. However, no name is available for
clade K. Accordingly, we here propose a new genus name for this clade:

Helopsaltes, new genus
Type species: Motacilla Certhiola Pallas, 1811. Gender masculine.
Included taxa: All of the species in clade K in Figs. 1 and 2, which

should now be named Helopsaltes certhiola, Helopsaltes ochotensis, He-
lopsaltes pleskei, Helopsaltes pryeri, Helopsaltes fasciolatus and Helopsaltes
amnicola. All species epithets except fasciolatus are invariable, and
therefore must not change ending due to change of gender of the sci-
entific name.

Diagnosis: The songs consist of short (c. 2–5 s) strophes separated by
distinct pauses (c. 2–15 s; highly variable depending on level of ex-
citement). All or most of the elements in the strophes are different from
each other, or arranged in different “blocks” of similar notes. The songs
of the species of Locustella sensu stricto are less clearly separated into
strophes, and consist of very fast rattling reels or monotonous repeti-
tions of rather simple syllables. See Section 3.3 and Fig. 3. No

diagnostic morphological characters are known to us, but there are
average differences between Helopsaltes and Locustella sensu stricto in
overall size (see Section 3.3).

Etymology: The name means “the marsh musician”, from Greek helos
(ἕλος), marshy ground, and Greek psaltes (ψάλτης), a musician playing
a string instrument.
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