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Graphical abstract

Phylogeny of Phylloscopidae based on the mitochondrial cytochrome b and nuclear
ODC, myoglobin and GAPDH introns inferred by *BEAST.

Traditional Seicercus species are highlighted in red. Photo by Craig Brelsford (14),
James Eaton (2, 10, 18, 19), Goran Ekstrom (9, 15, 16, 22), Jocko Hammar (6),
Jonathan Martinez (5, 7, 8, 11, 20), Yann Muzika (1), Frédéric Pelsy (12), Megan &
Chris Perkins (3), Nick Robinson (4, 13, 17, 21).
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ABSTRACT

The leaf warbler radiation (Aves: Phylloscopidae) has undergone a c. 50% increase in the number of recognised
species over the last three decades, mainly as a result of analyses of vocalisations and DNA. Using a multilocus
dataset for all of the species in this family, and multispecies coalescent-based as well as concatenation methods,
we provide the first complete species-level phylogeny for this important group, as well as an estimate of the
timing of diversification. The most recent common ancestor for the family was dated at 11.7 million years ago
(mya) (95% highest posterior density 9.8-13.7 mya), and divergence times between sister species ranged from
0.5 mya (0.3-0.8 mya) to 6.1 mya (4.8-7.5 mya). Based on our results, we support synonymising Seicercus with
Phylloscopus, which results in a monogeneric Phylloscopidae. We discuss the pros and cons of this treatment, and
we argue against proliferation of taxonomic names, and conclude that a large monogeneric Phylloscopidae leads

to the fewest taxonomic changes compared to traditional classifications.

We briefly discuss morphological evolution in the light of the phylogeny. The time calibrated phylogeny is a
major improvement compared to previous studies based on a smaller number of species and loci and can provide
a basis for future studies of other aspects of phylloscopid evolution.

1. Introduction

The systematics of the avian superfamily Sylvioidea have been the
subject of multiple studies in the last two decades, both at the super-
family level (Alstrom et al., 2006; Fregin et al., 2012) and at the level of
individual families (Cibois et al., 1999; Cibois, 2003; Cibois et al., 2001;
Pasquet et al., 2001; Sheldon et al., 2005; Moyle and Marks, 2006;
Johansson et al., 2007, 2016; Nguembock et al., 2007; Fregin et al.,
2009; Gelang et al., 2009; Packert et al., 2010; Alstrom et al., 2011a,
2011b, 2013a; Moyle et al., 2012; Olsson et al., 2013). This has led to
major reclassifications at both these ranks (comprehensive review, also
at lower levels, in Alstrom et al. (2013b), and at family level in Winkler
et al. (2015)).

One of the families in Sylvioidea is the Phylloscopidae, which has
been recognised at the family level since 2006 (Alstrom et al., 2006).

This family comprises the Old World leaf warblers, which are small
insectivorous birds renowned for often being difficult to identify by
appearance but more easily distinguishable by song (Ticehurst, 1938;
Williamson, 1967; Alstrom and Ranft, 2003; Bairlein et al., 2006). They
are distributed throughout much of the Old World, with the highest
number occurring in Asia. Up to 16 species occur along an elevational
gradient in the eastern Himalayas and at least 20 species in the Qinling
mountains in north central China. Northerly breeding species or po-
pulations are migratory, whereas more southern breeders are resident
or short distance, often altitudinal, migrants (Bairlein et al., 2006).
Some of the species are remarkable long-distance migrants. For ex-
ample, the Willow Warbler Phylloscopus trochilus breeds across the
northern Palearctic from western Europe to northeastern Siberia, and
all populations winter in Subsaharan Africa, south to southern South
Africa. The leaf warblers are very prominent members of many

* Corresponding author at: Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18D, 752 36 Uppsala, Sweden.
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ecosystems; e.g., they comprise up to 40% of all birds at some localities
in the western Himalayas (Price et al., 2003), and P. trochilus has the
largest population of all Swedish birds (Ottosson and Ottvall, 2012).

The leaf warblers are usually placed in the genera Phylloscopus
(“classic leaf warblers”) and Seicercus (“spectacled warblers”) (Watson
et al., 1986; Sibley and Monroe, 1990; Dickinson, 2003; Bairlein et al.,
2006). The taxonomy has undergone dramatic change in the past three
decades, with the number of recognised species rising from 52 in the
mid-1980s (Watson et al., 1986) to 77-78 at present (Dickinson and
Christidis, 2014; del Hoyo and Collar, 2016; Gill and Donsker, 2017;
Table 1). Six new species have been described (Table 1), and Eaton
et al. (2016) have proposed six further splits and documented three new
species from Indonesia. This sharp increase in the number of species is
mainly the result of studies of vocalisations and DNA, which have
elevated multiple subspecies to species rank and also been of im-
portance in the discovery of the new species (Table 1; see reviews in
Rheindt (2006); Martens (2010) and Alstrom et al. (2013b)).

Several phylogenetic studies have been undertaken based on a
variable number of species and a small number of loci (Richman and
Price, 1992; Martens et al., 2004; Pickert et al., 2004; Olsson et al,
2004, 2005; Johansson et al., 2007; Martens et al., 2008; Packert et al.,
2009). The most comprehensive analysis, which only utilised published
sequences from two mitochondrial genes and one nuclear intron, in-
cluded 69 species (Alstrom et al., 2013b). These studies have suggested
that the traditional Seicercus is nested within Phylloscopus, and also that
Seicercus is separated into two non-sister clades. These analyses have
instigated others to propose taxonomic changes. Dickinson and
Christidis (2014) split Phylloscopus into Rhadina, Abrornis and Phyllos-
copus sensu stricto, and expanded Seicercus to also include many of the
traditional Phylloscopus. In contrast, del Hoyo and Collar (2016) syno-
nymised Seicercus with Phylloscopus to create a monogeneric family. At
the other extreme, Boyd (2017) recognised no fewer than nine genera
(Table 1).

Leaf warblers have been used as model organisms in studies of
evolution of, e.g., breeding distributions (Price et al., 1997; Johansson
et al.,, 2007), ecological differentiation (Richman and Price, 1992;
Richman, 1996; Price, 2010), vocalisations (Badyaev and Leaf, 1997,
Irwin, 2000; Irwin et al., 2008; Mahler and Gil, 2009; Singh and Price,
2015; Tietze et al., 2015), eco-morphological adaptations (Marchetti,
1993; Marchetti et al., 1995; Marchetti, 1998; Forstmeier and KeRler,
2001, Forstmeier et al., 2001b), migration (Bensch et al., 1999,
2006a,b; Chamberlain et al., 2000), and ring species (Irwin et al.,
2001b, 2005; Alcaide et al., 2014).

Until now, no complete species level phylogeny has been available
for the family, and divergence time estimates have only been carried
out for a subset of species (Price, 2010; Packert et al., 2012; Price et al.,
2014). Here, we present the first time-calibrated phylogeny of all cur-
rently recognised species of Phylloscopidae, using mitochondrial and
nuclear markers. We also discuss the genus-level taxonomy based on
our results.

2. Material and methods
2.1. Study group

We studied all 76 species unanimously treated as separate species by
Dickinson and Christidis (2014), del Hoyo and Collar (2016) and Gill &
Donsker (2017), plus P. occisinensis (treated as a subspecies of P. affinis
by del Hoyo and Collar, 2016). We aimed to include three samples per
species, but for 18 species we could not obtain that number; in total,
198 individuals were analysed (Supplementary Table S1). As out-
groups, we used Cettia cetti and Aegithalos caudatus, based on Fregin
et al. (2012).
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2.2. Lab work

DNA was extracted from fresh material (muscle, blood or feathers)
and from toepad samples (two samples from two species) using the
Qiagen DNA Mini Kit and following the manufacturer’s protocol, but
with 30 ul DTT added to the initial incubation step for the extraction
from feathers and toepads. We sequenced the mitochondrial cyto-
chrome b (cytb) gene and three nuclear regions: myoglobin intron 2
(myo), ornithine decarboxylase (mainly) introns 6-7 (ODC) and gly-
ceraldehyde-3-phosphodehydrogenase intron 11 (GAPDH).
Amplification and sequencing of the fresh samples followed the pro-
tocols described in Fregin et al. (2012). The toepads were sequenced in
short (150-300 bp) segments with specifically designed primers and
specific amplification profiles (Supplementary Table S2). Not all loci
were obtained for all species (Supplementary Table S1). All sequences
have been deposited in GenBank (Supplementary Table S1).

Authenticity of sequences obtained from toepad samples is sup-
ported by several lines of evidence. (1) When independent samples
from the same species were included, the sequences were always highly
similar. (2) Phylogenetic relationships based on individual PCR am-
plicons were the same as those using full contigs. (3) No fragment was
identical to any other species included in this study. (4) Overlapping
forward and reverse sequence fragments were identical. (5) The mi-
tochondrial sequences showed no double signal in the electro-
pherograms or stop codons, insertions or deletions, and a vast majority
of nucleotide substitutions were found in the 3rd codon position and
resulted in few amino acid substitutions (of which a majority also was
found in sequences obtained from the fresh samples). The mitochon-
drial sequences from fresh samples were also validated in the same way.

2.3. Phylogenetic analyses

Sequences were aligned and checked using Geneious 7.1.9
(Biomatters Ltd.). For the nuclear loci, heterozygous sites were coded as
ambiguous. Substitution models were selected based on the Akaike
Information Criterion calculated in jModeltest 2.1.7 (Darriba et al.,
2012). The GTR 4+ T +1 model was selected for cyth, and GTR +T for the
other loci. Trees were estimated by Bayesian inference using BEAST
1.8.4 (Drummond et al., 2012). Xml files were generated in the BEAST
utility program BEAUti version 1.8.4. Different data partitioning
schemes were applied: (1) all loci were analysed separately (single-
locus analyses) under the best-fit models and both (i) a strict clock and
(i) an uncorrelated lognormal distributed relaxed clock. (2) All se-
quences were concatenated and partitioned by locus. The best-fit
models and a “birth-death incomplete sampling” tree prior with a
normal distribution with mean 2.0 and standard deviation 1.0 were
used. Because the strict clock was found to have higher posterior than
the relaxed clock in the single-locus analyses (Supplementary Fig. S1),
the strict clock was applied. Substitution and clock models were un-
linked. (3) As in (2), but the GTR + I' model was used also for cytb (cf.
Weir and Schluter, 2008), and a strict clock with a mean rate of 2.1%/
million years (Weir and Schluter, 2008) and a normal prior distribution
with standard deviation 0.001 was applied to cytb. All analyses were
run for 100-150 million generations and sampled every 1000 genera-
tions. Good mixing of the MCMC and reproducibility was established by
multiple runs from independent starting points.

Integrative species tree estimation was performed using "BEAST
(Heled & Drummond, 2010) in BEAST 1.8.4, with gene trees and species
trees estimated simultaneously. We ran analyses under the best-fit
models, and a strict clock prior with the rate fixed to 1 (as per default).
A piecewise linear population size model with a constant root was used
as a prior for the multispecies coalescent and “birth-death incomplete
sampling” as prior on divergence times. Default settings were used for
the priors, except for the “birth-death mean growth rate”, for which a
normal prior with initial value 1.0, mean 2.0 and Stdev. 1.0 was ap-
plied. 100-150 million generations were run in different runs, sampled
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every 1000 generations; the analysis was repeated multiple times.

In all BEAST and *BEAST analyses, convergence to the stationary
distribution of the single chains was inspected in Tracer 1.6 (Rambaut
et al., 2014). The effective sample sizes (ESS) for the joint likelihood
and other parameter values were > 1000, representing good mixing of
the MCMC, except in the *BEAST analyses, where ESSs for at least the
posterior were < 100. We also examined convergence and reproduci-
bility by running each analysis at least twice (4 times for *BEAST), with
random starting points. In all analyses, including the *BEAST analyses
with low ESSs, the topologies (including relative branch lengths) and
posterior probabilities (PPs) were similar across different runs. In most
analyses the first 25% of generations were discarded as “burn-in”, and
the PPs were calculated from the remaining samples; in the *BEAST
analyses where parameter convergence was not reached, the series of
trees with the lowest posterior values were discarded (these were not
only within the first 25% of the sampled trees). Trees were summarized
using TreeAnnotator version 1.8.4 (included in BEAST package),
choosing “Maximum clade credibility tree” and “Mean heights”, and
displayed in FigTree version 1.4.3 (Rambaut, 2012). The trees from all
*BEAST analyses were combined using LogCombiner 1.8.4. Xml files for
all analyses and a tree file in Newick format for the *BEAST tree are
available as Supplementary Material S1.

Analyses were also run using MrBayes 3.2 (Huelsenbeck and
Ronquist, 2001; Ronquist and Huelsenbeck, 2003). Sequences were
concatenated and partitioned by locus, and the best-fit models were
applied. Default priors were used. Four Metropolis-coupled MCMC
chains were run for 5 million generations and sampled every 1000
generations. Convergence was checked as for the BEAST analyses, as
well as by the average standard deviation of split frequencies passing
below 0.01 and the potential scale reduction factor (PSRF) being close
to 1.00 for all parameters.

2.4. Principles for linear taxonomic sequence

There are a large number of alternative ways in which a phylogeny
can be presented as a linear sequence. The sequence in which the
species are listed in Table 1 is based on our phylogeny, and on the
following simple principles. For each bifurcation in the tree, starting
from the most basal one, we first list members of the smallest daughter
lineage, or in the case of equal-size clades, the daughter lineage that
contains the oldest bifurcation. This essentially conforms to listing the
species in the order from the bottom to the top in Fig. 1 (because all
clades are ordered in an “increasing” order). Sister species are listed
either alphabetically or, in the case of species that have previously been
treated as conspecific, with the oldest name first (e.g., P. inornatus be-
fore P. humei, because the latter was previously treated as a subspecies
of the former).

3. Results
3.1. Phylogeny

The species tree (*BEAST) and concatenation (BEAST, MrBayes)
analyses are summarised in Fig. 1. There are some topological incon-
gruences between the species tree and concatenation trees, but none of
them have PP = 0.95 for alternative reconstructions in both the
*BEAST and concatenation trees (cf. Supplementary Figs. S2-S3). Two
primary clades were recovered (a, ; Fig. 1), although clade (3 was only
strongly supported in the concatenation trees (Supplementary Figs.
$2-S3). Within clade a, there was strong support in all analyses (pos-
terior probability, PP, =0.95) for seven main clades (E, F, I, J, M, N, O)
and a single species (Phylloscopus emeiensis) with uncertain relation-
ships. Within clade P, three main clades were consistently strongly
supported (U, W, X). Five of the deep nodes (G, L, K, R, Y) received low
support in the *BEAST phylogeny, but strong support in the con-
catenation analyses, whereas clade P had high PP in all but the MrBayes
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analysis. Neither Phylloscopus nor Seicercus were supported as mono-
phyletic. Several smaller subclades were recovered within the main
clades, with support varying among these subclades as well as among
analyses. Fifteen of the nodes had PP 0.36-0.89 (median 0.66) in the
*BEAST but =0.95 in one or both of the concatenation analyses
(highlighted in orange in Fig. 1). In contrast, in three cases *BEAST
reported PP = 0.95, whereas concatenation produced considerably
lower support (highlighted in blue in Fig. 1). Single-locus analyses
varied in resolution and support, with cytb fully resolved and with
generally well supported relationships, and with the nuclear loci,
especially GAPDH, showing much evidence of incomplete lineage
sorting, but no strongly supported incongruences (Supplementary Fig.
S4).

3.2. Dating

The most basal split, between clades a and 3, was dated to 11.7
million years ago (mya) (95% highest posterior density [HPD]
9.8-13.7 mya) (Fig. 2). Divergence times between the three youngest
pairs of sister species were 0.5 mya (95% HPD 0.3-0.8 mya: S. gram-
miceps—S. montis), 0.8 mya (0.5-1.1 mya: P. maforensis—P. amoenus) and
1.1 mya (0.8-1.5mya: P. hainanus-P. ogilviegranti); and between the
three oldest strongly supported sister pairs 4.1 mya (3.1-5.1 mya: P.
fuscatus—P. fuligiventer), 4.1 mya (3.2-5.1 mya: P. humei-P. inornatus)
and 6.1 mya (4.8-7.5mya: P. pulcher-P. maculipennis). Phylloscopus
emeiensis, P. neglectus and P. tytleri are the oldest single-species lineages,
with divergences from their closest relatives between c. 7.3-8.3 mya.
Deep intraspecific divergence was suggested within especially P. bonelli.

4. Discussion
4.1. Phylogeny

4.1.1. Relationships among clades

The phylogeny is overall well resolved and well supported, and is a
major improvement compared to previous studies based on a smaller
number of species and loci (e.g. Alstrom et al., 2013a,b). The non-
monophyly of both Phylloscopus and Seicercus suggested in previous
analyses (Olsson et al., 2004, 2005; Packert et al., 2009; Martens et al.,
2008; Alstrom et al., 2013a,b) was well supported.

Except for a few poorly supported nodes, there was good topological
congruence between the *BEAST and concatenation trees. However,
nodal support was generally lower in the *BEAST than in the con-
catenation trees. This is expected, because *BEAST accounts for gene
tree heterogeneity (Heled and Drummond, 2010). *BEAST should
therefore provide more realistic support than concatenation for clades
with incongruence among loci or cases where all or most of the signal
comes from a single locus. All of the instances where concatenation
reported much higher support than *BEAST concern short branches — in
fact, all but two of these branches are considerably shorter than any of
those with higher support in the *BEAST than in the concatenation
analyses. This pattern indicates poor or conflicting signal in the data,
and a more credible support provided by *BEAST. However, as argued
below, some of these cases are further corroborated by non-molecular
data. With respect to the three nodes in which *BEAST reported higher
support than concatenation, the coalescent species tree approach might
have lent additional signal that was not so strong in any of the in-
dividual single-gene or concatenation analyses, as has been shown in
some other studies (Edwards et al., 2007; Brumfield et al., 2008; Liu
et al., 2008; Liu and Edwards, 2009; Edwards, 2009).

The deeper nodes are generally less strongly supported than more
terminal ones. Clade o, which includes both traditional Phylloscopus
and Seicercus warblers, was strongly supported in all analyses. Clade f3,
which contains only traditional Phylloscopus, was only strongly sup-
ported by concatenation. Within clade a, none of the early splits into
clades G, L, K and P received unanimously strong support across all
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Fig. 1. Phylogeny of Phylloscopidae based on the mitochondrial cytochrome b and nuclear ODC, myoglobin and GAPDH introns inferred by *“BEAST. Traditional
Seicercus species are highlighted in red. Values at nodes indicate posterior probabilities (PP) in the order *BEAST/BEAST concatenated/MrBayes concatenated; *
indictates PP = 0.95. Nodes with PP < 0.90 in *BEAST but =0.95 in one or both concatenation trees are highlighted in orange, and nodes with PP = 0.95 in
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analyses; the three former were poorly supported by *BEAST but
strongly supported by concatenation, whereas clade P was only poorly
supported by MrBayes. Within the second main clade, f, clade Y was
only strongly supported by BEAST concatenation.

The strongly supported primary clades E, F, M, N, O, U, W and X are
further corroborated by morphological features and/or geographical
distributions. Within clade E, the species in clades A2 and B all have
darker lateral and rather diffuse paler median crown-stripes, and
usually uniformly pale orange lower mandibles, and all except one have
distinct pale wing-bars; they are distributed through the Himalayas and
mountainous regions of China and Southeast Asia. See below regarding
clade Al. The species in clade D resemble the ones in clades A2 and B,
and occur in partly the same area, but have even more contrasting
crown patterns. Clade N comprises all the Afrotropical species, which
are rather variable in plumage colouration, although they share a lack
of pale wing-bars. The species in clade O have contrastingly yellowish
undertail-coverts and all orange lower mandibles, and breed in Japan
and neighbouring parts of Russia and China and the Philippines. Clade
U contains the least conspicuously patterned species, which are all
various shades of brown, grey or dull greenish above and whitish/
brownish to yellowish below, without any contrasting crown, wing or
tail markings. They breed across the Palearctic and temperate (moun-
tainous) parts of the Oriental regions. The species in clade W are rela-
tively small, with contrastingly patterned wings (including unique pale
tertial markings) and in most species darker lateral and paler central
crown-stripes and pale rump patches; in addition, the sister pair P.
maculipennis—P. pulcher shows extensive white tail patterns. Their dis-
tributions are largely overlapping with those in clade U. The three
species in clade X have contrastingly paler edges to the greater wing-
coverts and tertials and have comparatively clean white underparts
(except for yellow throat/upper breast in P. sibilatrix). They are mainly
distributed in the Western Palearctic.

Clades F and M have traditionally been placed in Seicercus, and
differ from the traditional Phylloscopus species by lacking contrasting
pale supercilium and dark eye-stripe through the eye, while having
distinct pale eye-rings. Clade F includes a group that has variously been
classified as 2-4 small species (e.g. Eaton et al., 2016; del Hoyo and
Collar, 2016) with very contrasting plumage patterns, including unique
partly rufous head patterns and white eye-rings. The eight species in
clade M all have very similar appearances, and six of them were pre-
viously treated as conspecific (cf. Table 1).

Clade K was not supported in the *BEAST analysis, although it re-
ceived PP 1.00 in the two concatenation analyses. The two major
subclades I and J are well supported in all analyses, and both include
groups of species that have previously been lumped into larger species
units (cf. Table 1). Clade H, which received PP 0.92 in the *BEAST tree,
but PP 1.00 in the concatenation analyses, contains three species which
until recently were considered conspecific (cf. Table 1). Because of the
unresolved position of P. emeiensis, clade K is best considered a tri-
chotomy. Except for P. emeiensis, the species in this clade are very si-
milar morphologically: uniformly patterned above without any paler
crown stripes, pale wing-bars and usually at least some dark on the tips
of the lower mandibles. Their joint distribution covers much of the
Palearctic.

Clade A1l is only well supported in the BEAST analysis. However,
from a biogeographical point of view, this clade is reasonable, because
all of the species in this clade occur in the Philippines, Sundaland and
Melanesia. Moreover, most of them have contrastingly dark crown,
some with a variably distinct paler median crown-stripe; the underparts
usually show at least some yellow; and the lower mandible usually has
at least a prominent dark tip (sometimes mostly dark).

4.1.2. Relationships within closely related species groups

Clade Al is poorly resolved, and more sequence data are needed to
clarify the interrelationships within this clade. All of its species except
P. amoenus are polytypic, and often strongly divergent in plumage and
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vocalisations (del Hoyo et al., 2006; Eaton et al., 2016), so a more
comprehensive sampling of these is warranted (Alstrom et al., in prep.).
The relationships within clade A2 are uncertain, and also for these more
sequence data are needed. Owing to its unusual colouration (cf. Fig. 1),
P. xanthoschistos was previously placed in the traditional Seicercus, but
was transferred to Phylloscopus based on molecular data (Olsson et al.,
2005), later confirmed by analyses of songs and additional mtDNA
(Packert et al., 2009). The present study confirms that it is closely re-
lated to P. davisoni, P. ogilviegranti and P. hainanus, with all four being
allopatric replacements of one another from the Himalayas to mainland
Southeast Asia and southern China.

Although the phylogenetic relationships within clade B are not
unanimously well supported, they make more sense from a biogeo-
graphical and morphological point of view than the sister relationship
between P. goodsoni and P. occipitalis found by Alstrom et al. (2013a,b):
P. claudiae and P. goodsoni are in close geographical proximity, whereas
P. goodsoni and P. occipitalis are at the extreme ends of the joint dis-
tribution. Moreover, P. reguloides, P. claudiae and P. goodsoni are more
similar in plumage, and were until recently considered conspecific (cf.
Table 1). The relationships among the three species in clade D are
unresolved.

The P. trochiloides complex (clade J) has been the subject of multiple
detailed studies (see Table 1), and the most recent one, based
on > 2300 SNPs, revealed a complex pattern which is not entirely
consistent with the current taxonomy (Alcaide et al., 2014). Given that
this species complex may be a rare example in nature of a ring species
with complicated gene flow patterns, our data do not add anything to
this discussion.

Within clade M, Olsson et al. (2004) and Packert et al. (2004) re-
covered the same topology (S. poliogenys not included by latter authors)
based on mtDNA, except that they found S. soror to be sister to our clade
M1b and S. omeiensis to be sister to the others in clade M1. The support
for this was very low, but was raised in an analysis using non-molecular
data (Olsson et al. 2004). In the present study, the sister relationship
between S. soror and S. omeiensis (clade M1a) was high in the *BEAST
but low in the concatenation analyses. Examination of the single locus
trees shows that this was only supported by myoglobin. We suggest that
more sequence data are needed to evaluate this. Clade M1b is strongly
supported by concatenation but not in the *BEAST analysis. We con-
sider this highly plausible because of the generally close similarities
between S. valentini and S. whistleri in morphology, song and breeding
habitat/altitude (Alstrom and Olsson 1999, 2000; Martens et al., 1999;
Olsson et al., 2004; Packert et al., 2004).

Clade M2b is poorly supported by our molecular data. However, as
remarked by Olsson et al. (2004), this clade receives further support
from a plumage synapomorphy: the eye-ring is broken above they eye
(complete above the eye in the other species in clade M). Also clade
M2a, which is strongly supported by our data, has a plumage synapo-
morphy (eye-ring thinly broken behind eye).

Watson et al. (1986) suggested based on morphological similarity
that P. ruficapilla, P. laurae and P. laetus form a superspecies, but this is
not supported by our data, although the sister relationship between P.
ruficapilla and P. umbrovirens is not unanimously strongly supported.
However, Watson et al.’s (1986) suggestion that P. herberti and P. bu-
dongoensis form a superspecies is supported by our analysis in as much
as they are strongly supported as sisters.

The species in clade Q have all at some point been considered
conspecific (e.g. Ticehurst, 1938; cf. Table 1). Our analyses fail to re-
solve the relationships among the different taxa. Likewise, Bensch et al.
(20064a,b) found completely unresolved relationships between P. colly-
bita and P. ibericus (=P. collybita brehmii in their paper) in four nuclear
markers (different markers compared to ours). The sister relationship
between clade Q and P. trochilus are, however, strongly supported.
Bensch et al. (2006a,b) speculated that the lack of reciprocal mono-
phyly between P. collybita (including P. ibericus) and P. trochilus found
in three out of four analysed nuclear loci, but not in mtDNA, might be
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due to ancient male-biased introgression. Zink and Barrowclough
(2008) suggested that this could instead be explained by differences in
effective population size between mtDNA and nuclear DNA, and that
nuclear DNA is expected to be “lagging behind”. At any rate, our coa-
lescent-based analyses (as well as concatenation) strongly support the
sister relationship between clade Q and P. trochilus.

The sister relationship between P. affinis and P. occisinensis (clade S)
is strongly supported in the *BEAST analysis, whereas the concatena-
tion analyses found P. occisinensis and P. griseolus as sisters with very
low support. The relationship found by *BEAST seems more reasonable
in view of the extreme similarity in morphology and vocalisations be-
tween P. occisinensis and P. affinis (Martens et al., 2008), and is also
supported by the distributional pattern, with P. affinis and P. griseolus
being sympatric in the western Himalayas whereas P. affinis and P.
occisinensis have parapatric distributions (Martens et al., 2008). More
data are needed to resolve this. More sequence data are also needed to
elucidate the relationships among the four species in clade V.

4.2. Dating

Time estimates for up to almost 60 species of Phylloscopidae by
Price (2010) and Péckert et al. (2012), using partly different calibra-
tions and methods compared to our study and to each other’s, agree
fairly well with our calculations. However, the trees obtained in our
study and those of Price (2010) and Packert et al. (2012) differ slightly
among each other in topology, which will affect some dates.

In a genomic study of the oscine radiation, Moyle et al. (2016) es-
timated the split between Phylloscopus trochilus and Seicercus montis to c.
9.4 mya (95% HPD 7.2-11.7 mya) (10.6 mya, 95% HPD 7.8-13.6 mya
using different calibrations) (R. G. Moyle, in litt.), which would render
their estimate of the split between our clades a and 3 c. 1-2 my younger
than our results, although the confidence intervals of the two studies
are broadly overlapping.

In contrast, our divergence times are considerably younger than
those in a recently published time tree of the Himalayan Phylloscopidae
(Price et al., 2014). For example, the root of Phylloscopidae, excluding
clade X which does not occur in the Himalayas, is at 16.4 mya (95%
HPD 14.5-17.9mya) in the Price et al. (2014) study, i.e. with non-
overlapping confidence interval compared to our analysis. More recent
splits have overlapping confidence intervals. For example, the split
between S. burkii and S. affinis was estimated at 4.4 * 3.0-5.7 mya by
Price et al. (2014) vs. 3.8 = 2.9-4.7 in our study, and the divergence
between P. pulcher and P. maculipennis at 8.3 = 6.6-10.3mya vs.
6.1 = 4.8-7.5mya. These differences might be attributed to differ-
ences in taxon sampling and number of individuals per species (Price
et al. (2014) analysed 21 species, vs. 76 in our study, and used only
single individuals per species, vs. 3 individuals for most species in our
study). However, they are more likely due to differences in calibration
methods. Price et al. (2014) used multiple passerine fossils and bio-
geographic dates, many relating to Passeroidea and only one to Syl-
vioidea (a split between two closely related Sylvia species). Un-
fortunately, fossil dating is not possible for Phylloscopidae alone,
because there are few fossils (oldest reliably identified one, Phylloscopus
sp., is 1.6-1.8 mya; Mourer-Chauviré et al., 1977; Tommy Tyrberg, in
litt.).

In the absence of a scientific consensus on the reliability of available
calibration points, all node ages, here and in other publications, should
be regarded as tentative.

4.3. Revised classification

The non-monophyly of Phylloscopus and Seicercus necessitates a
taxonomic revision. This was already suggested by Olsson et al. (2004,
2005) and Alstrom et al. (2013a,b), who, however, recommended
awaiting a more comprehensive analysis before revising the taxonomy.
Nevertheless, based on the earlier phylogenetic analyses, various
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suggestions for a revised classification have been proposed (see
Table 1). The first one by Dickinson and Christidis (2014) restricted
Phylloscopus to our clade U, resurrected names for our clades W (Ab-
rornis) and X (Rhadina) and placed all Phylloscopus in our clade a into a
much expanded Seicercus (Table 1).

Boyd (2017) recognised no fewer than nine genera, which are lar-
gely in agreement with the clades recovered by us (and most of which
were applied at the subgeneric level already by Watson et al., 1986
based on morphological similarities): clade E, Cryptigata Mathews, 1925
(type Gerygone giulianetti = Phylloscopus maforensis giulianetti); clade F,
Pycnosphrys Strickland, 1849 (type Pycnosphrys grammiceps); clade K,
Acanthopneuste H. Blasius, 1858 (type Phyllopneuste borealis); clade M,
Seicercus ~ Swainson, 1837  (type  Cryptolopha  auricapilla
Swainson = Sylvia burkii E. Burton); clade N, Pindalus Gurney, 1862
(type Pogonocichla ruficapilla); clade O, “Pycnosphrys”; clade U, Phyl-
loscopus Boie, 1826 (type Motacilla trochilus); clade W, Abrornis J.E. and
G.R. Gray, 1847 (type Abrornis erochroa = Phylloscopus pulcher); and
clade X, Rhadina Billberg, 1828 (type Motacilla sibilatrix).

We support the proposal by del Hoyo and Collar (2016) to syno-
nymise Seicercus with Phylloscopus. This will lead to the fewest taxo-
nomic changes compared to traditional classifications. The main
changes are that Seicercus affinis needs to change name to Phylloscopus
intermedius and Phylloscopus davisoni must change to Phylloscopus in-
tensior (see explanations in del Hoyo and Collar, 2016). In order to
apply Boyd’s (2017) multigenus approach, one would have to propose a
new generic name for clade O (as presumably indicated by Boyd (2017)
by placing “Pycnosphrys” in quotation marks). Moreover, because clade
K is not unanimously well supported, it might be better to restict
Acanthopneuste to clade I and propose new generic names for clade J
and Phylloscopus emeiensis.

There is a current trend to break up large genera into smaller
genera, especially when a small, often monotypic, genus is found to be
nested within a larger clade. In our opinion, this practice does not fa-
cilitate communication, and the improved information about relation-
ships obtained through recognition of multiple smaller genera is not
necessarily more meaningful than showing that an odd taxon is actually
part of a larger clade. We do not advocate taxonomic proliferation of
names, and do not consider large genera a problem, as long as they
represent monophyletic groups.

4.4. Morphological evolution

Although not the focus of this paper, a few comments can be made
on the morphological evolution (cf. Fig. 1 and Graphical Abstract). The
leaf warblers are (1) overall rather homogeneous in size (9-14 cm; del
Hoyo et al., 2006), structure and plumage. (2) Most of the main clades
have evolved a novel “basic plumage type” (most striking for clades F
and M), which has usually been highly conserved with only slight
modifications over long time spans (e.g., the P. borealis complex [clade
H] and P. trochiloides complex [clade J] are difficult to distinguish by
appearance despite c. 7.5 my of independent evolution). (3) The rate of
plumage divergence has been overall higher in some of the main clades
(especially in the Philippine-Sundaland-Melanesian radiation [clade
A1], where c. 35 taxa (most treated at subspecies rank) share a most
recent common ancestor < 2.5 mya). (4) In clade A2, two of the species
(P. davisoni, P. ogilviegranti) have presumably retained an ancestral
plumage type shared with the species in clade B, whereas the two other
species (P. xanthoschistos, P. hainanus) have diverged markedly in plu-
mage (the former so much that it was previously placed in the tradi-
tional Seicercus). (5) There are several cases of convergent plumage
evolution (e.g., striped crown, pale wingbars and bright yellow un-
derparts appear to have evolved independently multiple times; P. cor-
onatus and especially P. emeiensis are very similar to the species in clade
B and to two of the species in clade A2).
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5. Conclusions

The generally well resolved and well supported time calibrated
phylogeny is a major step forward compared to earlier studies based on
a smaller number of species and loci. This can provide a basis for future
studies of other aspects of the evolution of this ecologically important
group of birds.
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